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Abstract

We propose a model of simultaneous valuation of different classes of finan-
cial instruments in a financial system. We build on the literature on financial
contagion using models of cross-holdings of equity participations and debt
in different seniority classes. We combine these with recently proposed
methods of network valuation under stochastic external assets, resulting in
a multilayer network valuation model, where each layer has its own valu-
ation function, reflecting the payoff structure of the financial instruments
in that layer. We extend this model to include bail-ins and contingent con-
vertible debt instruments, two recently introduced mechanisms for recapi-
talizing banks at the brink of failure without the use of public bail-outs. We
provide a Matlab implementation of this extension.
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Introduction

The 2007-2009 global financial crisis exemplified how interconnectedness of financial
institutions, henceforth banks for simplicity, combined with a low loss-absorption ca-
pacity of banks can propagate distress in the financial system (Laeven and Valencia2013). This low loss-absorption capacity led to capital shortfalls at many banks when
the crisis hit, forcing policy makers to step in with public bail-outs in order to prevent the
default of major banks. The unintended consequence of these emergency measures was
an increase in sovereign credit risk, creating a vicious circle between the creditworthi-
ness of banks and governments (Fratzscher and Rieth). Bail-outs further create a
moral hazard problem by rewarding less prudent banks with an implicit insurance (Dam
and Koetter). Those insights have motivated the adoption of alternative approaches
for dealing with capital shorftalls at banks, aimed at breaking the sovereign-bank nexus
and addressing moral hazard.

In 2014, the Single Resolution Mechanism was created (BRRD, SRMR),
intended to act as one of the three pillars of a banking union to be established, alongside
the Single Supervisory Mechanism (SSM; EBA) and the European Deposit
Insurance Scheme (not yet implemented). Resolution aims to provide an alternative to
insolvency for the orderly exit of a bank from the market, while ensuring the provision
of critical functions. It would start only after recovery measures have failed and the
bank is considered to be failing or likely to fail (BRRD). One tool available to res-
olution authorities is bail-in, which involves the full or partial write-down or conversion
into equity of entire seniority classes of liabilities. Similarly, in the US, the resolution
mechanism for systemically important institutions (SIFI’s) is specified in the Orderly
Liquidation Authority (OLA) of Title II of the Dodd-Frank Wall Street Reform and
Consumer Protection Act of 2010 (Reform and Act), including the possibility of
bail-in. It differs from the European Single Resolution Mechanism in that the resolution

1



(and bail-in) is designed to be applied after the failure of the institution (McAndrews
et al. 1). We will present a framework modelled after the EU regulatory landscape
in this paper; however, adapting it to the US Dodd-Frank act regulation, or any other
regulation for resolution that includes the concept of bail-in, should be straightforward,
mainly changing the parameters for resolution and recapitalization levels.

From a policy maker’s perspective, the bail-in mechanism has the advantage of of-
fering a recapitalization option for failing banks that does not rely on recourse to public
funds. However, it implies that the losses that are otherwise shifted to the taxpayer will
be borne within the system where the instruments subject to a bail-in are being held,
hence creating a potential channel for contagion. The phenomenon of financial conta-
gion has been studied before the crisis (Eisenberg and Noe), but has received far
more attention from both the academic as well as the regulatory community since (Up-
per). Various approaches have been proposed to study contagion due to bilateral
loans (Elsinger, Lehar, and Summer), equity participations (Elsinger) and
some types of derivatives (Fischer). Bail-in, being a relatively new mechanism,
has received less attention so far. Most notably, Hüser et al. study the potential
scope of direct losses from a data set on the European banking system.

Another measure for dealing with capital shortfalls at banks and preventing bail-out
is the recognition of contingent convertible debt instruments (CoCo’s), thereby essen-
tially creating this new asset class (Flannery). These instruments are similar to
convertible bonds, with the main difference being that the conversion to equity (or write-
down) is triggered by a pre-defined set of conditions rather than discretionary. CoCo’s
have been succesfully adopted in the past by banks such as Lloyd’s bank, Credit Suisse
and Rabobank (De Spiegeleer and Schoutens).

The contribution of the present work is to introduce bail-in mechanisms and CoCo’s
into formal models of financial contagion. As noted by Fischer, such a model

1It is not clear what actions would be adopted according to US regulation if a SIFI were considered to
be close to failing. McAndrews et al., p.5, express their opinion that the regulatory entities would
only act upon failure.
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constitutes an extension of the classical framework of Merton to account for cross-
holdings of equities and liabilities. Our model extends the model of Fischer and
the related model of Elsinger by including the possibility of a bail-in mechanism
and CoCo’s, and ex-ante valuation as introduced by Barucca et al.. It extends the
model of Hüser et al. by including higher-order contagion e ffects from cascades
and the aforementioned extensions, and generalizes it to allow for different allocations
of equity between bailed-in creditors and old equity owners. The potential scope of ap-
plications of the model includes central banks, where it can serve as an add-on to stress
test exercises, as well as regulators who have to decide on capital buffers for systemi-
cally important institutions and for systemic risk (CRD-IV). For this purpose we
provide Matlab code freely available under the MIT licence.

Literature Review

In order to quantify contagion in financial networks due to interbank liabilities, it is
necessary to develop a model that captures the nonlinear behaviour of the propagation
of risk in a stressed scenario. Within this stream of research, Eisenberg and Noe
describe a financial network mathematically and provide an algorithm to compute a
clearing payment vector in such a model. The clearing payment vector consists of the
payments made by each bank to other banks in the network due to claims, taking into
account the possibility of default of a bank. Elsinger extend Eisenberg and Noe2001’s model to include the possibility of cross-ownership of equity in the network,
and to allow for multiple seniority classes of liabilities. This extension is necessary to
incorporate the bail-in regulation. Hence, the model used in this project is largely based
on Elsinger’s model, applied to the simulation of bail-in regulation. Rogers and
Veraart introduce bankruptcy costs in the Eisenberg and Noe-model, and
argue that with bankruptcy costs, solvent banks may have incentives to rescue failing
banks in the network. Besides the Eisenberg and Noe model and its extensions,
other simpler models have been proposed to quantify contagion effects. Furfine
consider a model in which the recovery rate after the default of a bank is predetermined
and equal for all banks, instead of being determined endogenously as in Eisenberg and
Noe’s model.
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The aforementioned network models are a tool that can be applied to real world data
to assess the systemic risk in a particular network of banks. Elsinger, Lehar, and Sum-
mer model a network of Austrian banks using Eisenberg and Noe’ frame-
work, with data from the Austrian Central Bank. They conclude that in this particular
network, the correlation of banks’ assets contributes more to systemic risk than the con-
tagion due to interbank liabilities, which has rare effects. Upper and Worms do
a similar empirical study for German banks, concluding that the contagion effects of
the default of a bank in the network can have considerable effects. This discrepancy
between empirical studies suggests that contagion effects are highly dependent on the
network topology.

When applying network models to quantify systemic risk, it is common to follow
a stress test approach in which initially an external shock affects the network, and then
the contagion propagates endogenously. Two main approaches can be applied for the
initial shock: assuming that it affects only one bank, such as in traditional stress testing,
or assuming that the external shock (such as a macroeconomic stress scenario) affects
the whole network at once. Of particular relevance is the case of an external shock to
certain assets which are held by multiple banks in the network (overlapping portfolios).
Beltran, Cordell, and Thomas observe that during the 2007-2009 financial crisis,
the liquidity and price of Collateral Debt Obligations of Asset Backed Securities (ABS
CDO’s) dropped substantially, having caused $218 billions in losses to global banks,
insurance companies and asset managers until January 2019. Moreover, Krishnamurthy2010 argue that the liquidity crisis affected many other assets unrelated to the ”toxic”
ABS CDO’s. Caccioli et al. develop a stress test model in which overlapping port-
folios of banks are subject to the depreciation of one ”toxic” asset, and followed by an
endogenous contagion as described in Furfine’s model. They conclude that the
combination of overlapping portfolios and contagion due to interbank liabilities causes
far more systemic risk than any of these sources of risk considered individually.

Another topic of interest when modelling systemic risk in a financial network are fire
sales. In a stressed scenario, some banks which are at or close to default may engage in
fire sales of their assets, to meet leverage targets, to raise liquidity or as part of their res-
olution.Cifuentes, Ferrucci, and Shin incorporate fire sales into the Eisenberg and
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Noe-model, by assuming that banks sell part of there assets as soon as they breach
a capital adequacy constraint given by the ratio of equity to total assets. The price of the
assets is then endogenously generated as a function of supply (fire sales) and demand.
Siebenbrunner, Sigmund, and Kerbl propose a similar fire sales model, however
assuming that banks sell their assets at the event of default.

In the context of stress testing, the Eisenberg and Noe-model and its extensions
are used for macroprudential stress tests. These are a class of stress tests which consider
the system-wide effects of a stressed macroeconomic scenario, including endogenous
interactions caused by interbank liabilities, overlapping portfolios, and fire sales. The
Bank of England has developed the RAMSI stress test (Burrows et al., Aikman
et al.), which includes the Eisenberg and Noe-model to quantify contagion
after the macroeconomic shock, as well as fire sales and funding costs. Aymanns et al.2017 discuss the developments in computational models of financial stability and their
applications to macroprudential stress tests.

The Elsinger-model and its extensions can be used in the context of ex-ante
valuation as an extension of Merton’s structural approach for pricing debt. Suzuki2002 and Fischer develop such a network valuation model with multiple seniori-
ties, and calculate the price of debt in this framework. Barucca et al. add to this
model the concept of a ”local ex-ante valuation”, in which banks only have information
about their own counterparties. We add to this literature the ex-ante network valua-
tion of debt with bail-in and the ex-ante network valuation of CoCo’s. In particular,
the network valuation of CoCo’s extends the previous models of pricing CoCo’s within
Merton’s structural approach, to account for the network structure (see Pennacchi).
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Chapter 1

The Interbank Network Model

In this section we present the formal framework that will be used for modelling bail-
in in section. The framework builds on Elsinger, which is an extension of the
frameworks of Eisenberg and Noe and Elsinger, Lehar, and Summer, and we
will largely follow their notation here.

We consider a system of n − 1 financial entities, and a ”sink node” with label n

corresponding to external creditors towards which the financial entities have liabilities.
In the context of financial systems, the financial entities may be thought of as banks or
other financial institutions, and the external creditors could be other banks not included
in the system of consideration, corporations or individual depositors. It is worth point-
ing out, however, that the formal framework per se is not limited to this interpretation.
Extensions to include corporations or even households are a matter of data availability
and the aim of the analysis, as the model framework is agnostic to these differences. For
simplicity, and keeping the aim of this study in mind, we will continue to refer to the en-
tities in the system as banks, however. They are represented via a stylized balance sheet,
which on the asset side consists of external assets as well as assets that represent either
claims on or equity participations in other entities in the system. On the liability side,
we distinguish several seniority classes of liabilities, going to entities within the system
and outside, and equity, which is the residual quantity. The set of n financial entities and
the different types of connections between them constitute a multilayer network. This
corresponds to the model of Elsinger, which we extend in the subsequent sections.
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Before we begin the formal introduction of the model, we will lay its main logic
qualitatively. Figure shows the di fferent layers of the network model, in this case a
simple example with five banks and two seniority layers of liabilities. As can be seen,
the same set of five banks have different links in each of the layers. Each of these links
is valued using a different payoff function, depending on the layer. The payoff for the
equity layer looks like the payoff for a long call option with strike price equal to the total
liabilities. The payoff for the most junior layer can be described as long call option with
strike equal to the value of senior liabilities plus a short call option with strike equal
to total liabilities. Payoffs for more senior equity classes can be described analogously,
with strikes equal to the combined value of the more senior liability classes (or 0 for
the most senior class) in the long position and equal to this value plus the value of the
current class for the short position. The reminiscence of the model of Merton here
is not misleading, and will be discussed in greater detail in section.

Figure 1.1: Payoff functions for multiple layers of cross-holdings
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1.1 Definition of a financial system

Definition 1.1.1 (External assets). Let ei ≥ 0 be the price of all external assets of bank

i. The vector e ∈ Rn is the vector of external assets.

Definition 1.1.2 (Liabilities). Let Li, j,s denote the liabilities from bank i towards bank j

within seniority class s ∈ {1, . . . , S }, S being the most junior seniority class. We assume

that the ”sink node” has no liabilities, i.e. Ln, j,s = 0 for all j, s. The corresponding

tensor of liabilities is L ∈ Rn×n×S .

Definition 1.1.3 (Ownership). It is possible that bank i owns a share Θ j,i of bank j. The

ownership matrix Θ is required to be a holding matrix, as defined in Elsinger, i.e

it must satisfy that
∑

i Θ j,i ≤ 1 for all j, and, for any S ⊂ {1, . . . , n},
∑

i∈S Θ j,i < 1.

We say that a bank is in default when its liabilities are greater than its assets. A bank
is bailed-in when it is considered to be failing-or-likely-to fail (FLTF) by the regulators.
We discuss the modelling of the FLTF decision and bail-in in section.

Hence, the financial system is fully described by the vector of assets e ∈ Rn, the
liabilities tensor L ∈ Rn×n×S , and the ownership matrix Θ ∈ [0, 1]n×n. It is not trivial to
determine the payments between banks if some bank is in default. The clearing payment
matrix is defined as follows:

Definition 1.1.4 (Clearing payment matrix). A clearing payment matrix is a matrix P ∈

Rn×S of total payments made by each bank, so that the payments respect the following

criteria:

• limited liability: the total payments of each bank must not exceed the total assets

of the bank.

• priority of debt claims: the bank’s stockholders receive no value unless all liabil-

ities are repaid fully.

• seniority hierarchy of debt claims: lower seniority classes receive no payoff unless

all liabilities of higher seniority are repaid fully.

• proportionality: in case of default, all creditors of the same seniority class are

paid proportionally to the liabilities against them.
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1.2 Calculation of the clearing payment vector

Consider first the case with no seniority structure (S = 1). Let p̄ ∈ Rn be the vector
of total liabilities of each bank, p̄i =

∑
j Li, j. Define the matrix Π ∈ Rn×n of relative

liabilities by

Πi, j =

 Li, j

p̄i
, if p̄i > 0

0, if p̄i = 0

In order to determine the clearing payment vector, it is first necessary to define the
concept of the equity of a bank. The equity of a bank consists of its total amount of
assets (external assets plus assets from interbank lending and holdings) minus its total
liabilities, p̄i. In the case that the holdings matrix Θ = 0, the equity vector is simply
expressed as:

V∗(p) = (Assets − Liabilities)+ =
(
e + Π′p − p̄

)+

This definition corresponds to the value of equity for the owner (equity payoff),
which is non-negative. We will also consider the related definition of accounting value
of equity (which can be negative), which we will also refer to as equity:

Equity = Assets − Liabilities = e + Π′p − p̄

If the holdings matrix Θ is not null, the equity is defined as follows.

Definition 1.2.1 (Equity). Given a financial system with no seniority structure, and a

payment vector p ∈ Rn, the vector V∗(p) ∈ Rn is an equity vector if and only if it is a

fixed point of the following map:

ψ(V) = (e + Π′p − p̄ + Θ′V)+

So that,

V∗(p) = (e + Π′p − p̄ + Θ′V∗(p))+ (1.1)
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Elsinger (lemma 5, Appendix) show that the map has a unique fix point V∗(p)
for any p ∈ Rn, provided that Θ is a holding matrix.

To be consistent with the clearing criteria, a payment vector must satisfy:

pi =


0, if

(
e + Π′p + Θ′V∗(p)

)
i ≤ 0(

e + Π′p + Θ′V∗(p)
)

i, if 0 ≤
(
e + Π′p + Θ′V∗(p)

)
i ≤ p̄i

p̄i, if p̄i ≤
(
e + Π′p + Θ′V∗(p)

)
i

Elsinger prove the existence of a clearing payment vector under this framework
and discuss conditions for its uniqueness. Of more interest from a practical perspective
it to calculate the (largest) clearing vector. First, it is necessary to define a new variable
W∗(p) given a payment vector p ∈ [0, p̄], such that W∗(p) is a fixed point of the map
ψW(W) = e + Π′p − p̄ + Θ′(W ∨ 0).

Lemma 1.2.1. [Elsinger] The sequence W k defined by W0(p) = e + Π′p − p̄ and

Wk+1(p) = e + Π′p − p̄ + Θ′ΛkWk+1, where Λk = diag(Wk > 0) converges to the largest

fixed point of ψW .

Theorem 1.2.1. [Elsinger] If Θ is a holding matrix, the sequence pi+1 = (W∗(pi)+

p̄)+ ∧ p̄, with p0 = p̄, converges to the largest clearing payment vector.

1.3 Seniority structure

The previous results show how to calculate a clearing payment vector for a financial
system in the particular case that there is no seniority structure. Consider now the case
of a financial system with seniority structure (S > 1). In this case, a payment matrix P

is determined by its value in each seniority class: P ∈ Rn×S , and the total liabilities are
P̄ ∈ Rn×S where P̄i,s =

∑
j Li, j,s. Similarly, the tensor of relative liabilities is defined for

each seniority class:

Πi, j,s =

 Li, j,s

P̄i,s
, if P̄i,s > 0

0, if P̄i,s = 0

Definition 1.3.1 (Equity Vector). The equity vector under a given payment matrix is

defined by the equation:
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V∗(P) =
(
e +

S∑
s=1

Π′·,·,s P·s −
S∑

s=1

P̄·s + Θ′V∗(P)
)+

(1.2)

It is a fixed point of the map

ψS (V) =
(
e +

S∑
s=1

Π′·,·,s P·,s −
S∑

s=1

P̄·,s + Θ′V
)+

(1.3)

A clearing payment matrix must respect the seniority structure. Elsinger pro-
vide a characterization for a clearing payment matrix in this case:

Definition 1.3.2. [Clearing payment matrix] A matrix P∗ satisfying P∗i, j ∈ [0, P̄i, j], ∀i, j

is a clearing payment matrix if and only if it is a fixed point of the map

ΦS(P)i,T =

P̄i,T , if ei +Ai,T ≥ P̄i,T(
ei +Ai,T

)+
, otherwise

(1.4)

WhereA·,T =
∑S

s=1 Π′·,·,sP·,s −
∑T−1

s=1 P̄·,s + Θ′V∗(P).
Hence, ∀T ∈ {1, . . . , S },

P∗·,T =
(
e +

S∑
s=1

Π′·,·,sP
∗
·,s −

T−1∑
s=1

P̄·,s + Θ′V∗(P∗)
)+

∧ P̄·,T (1.5)

Intuitively, a bank will only pay liabilities for a certain seniority class T if all se-

niority classes s < T have been fully paid.

Elsinger define a sequential clearing procedure for calculating the clearing
payment matrix, starting at the most junior seniority class assuming that all senior se-
niority classes have been fully paid, and proceeding iteratively to more senior classes
if the bank is insolvent. Formally, following the notation in Elsinger, define
H = (H1, . . . ,Hn) to be the vector of seniority classes in which the current iteration
is, with H0 = (S , . . . , S ). Define

eH
i = ei +

n∑
j=1

H j−1∑
s=1

Π j,i,sP̄ j,s −

Hi−1∑
s=1

P̄i,s (1.6)

Which corresponds to the assets of bank i in the current iteration H. Similarly, define
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ΠH
i, j = Πi, j,H(i), (pH)i = Pi,H(i) (1.7)

Start the iteration with H0 = (S , . . . , S ), and let p∗H0
be the clearing vector for the

financial system with no seniority structure
(
eH0

,ΠH0
, p̄H0 ,Θ

)
. If the equity of all banks

in this financial system is non-negative, or the only banks with negative equity have
reached the most senior seniority structure in the iteration, the procedure is completed.
Otherwise, let Λ = diag

(
eH0

+ ΠH0 ′p∗H0
− p̄H0 + Θ′V∗(p∗H0

) < 0
)
, and set H1 = H0 − 1′Λ.

Iterating this procedure leads to a clearing matrix in finite steps (Elsinger).
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Chapter 2

Modelling Bail-in

To model bail-in, we assume that the K most junior seniority classes are bail-in-able. If a
certain amount Bail-Ini, j,s of the liabilities Li, j,s are to be converted to equity, bank j will
gain a share Ci, j,s of bank i. This share can be dependent on the bail-in amount Bail-Ini, j,s

and the equity values of the banks, Equityn
j =

(
e + (Θn)′V∗(P∗) +

∑
s Π′·,·,sP

∗
·,s −

∑
s P̄n
·,s

)
j
,

so we model the conversion share as a function:

C : Rn×n×S × Rn → Rn×n×S (2.1)(
Bail-In,Equity

)
7→ C

(
Bail-In,Equity

)
(2.2)

Clearly, Ci, j,s = 0 must hold for s ≤ S −K. We also impose that C(0,Equity) = 0 for
all values of Equity. For convenience of notation, we will usually refer to C

(
Bail-In,Equity

)
as simply the conversion matrix C. In order for the updated holdings matrix to still be
consistent with the definition of a holdings matrix (definition), we have to make
one additional assumption on the conversion matrix:

Assumption 2.0.1 (Conversion matrix). The shares gained in each bank sum to less

than one:

∑
s

∑
j

Ci, j,s < 1 ∀i (2.3)

Note that while the bail-in is overall neutral for the investors of the bailed in bank, it
could imply mutually offsetting gains and losses for either the old equity owners or the
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bailed in creditors, depending on the conversion factors C. A too low conversion factor
(or a complete write-down of the liabilities, corresponding to a conversion factor of 0)
would mean a transfer of wealth from the bailed in creditors to the old equity owners of
the bank, and vice versa for too high conversion factors.

In practice, conversion factors would have to be determined from applicable regu-
lations or covenants. In the absence of such data, we present here what we consider a
canonical choice for the conversion factor, the fair share, which ensures that the bail-in
is wealth-neutral for all affected investors:

Definition 2.0.1 (Fair conversion matrix). A conversion matrix is said to be fair if the

share gained by the bailed in creditors is equal to the share of the bailed in liabilities in

the new equity, consisting of the bailed in liabilities plus the old equity, in the case the

latter is positive. Let Bail-Inn
j,s = P̄n

j,s − P̄n+1
j,s and Bail-Inn

j =
∑S

s=1 P̄n
j,s − P̄n+1

j,s denote the

amount of liabilities currently bailed in at bank j over one seniority class and all se-

niority classes, respectively, and let Equityn
j =

(
e + (Θn)′V∗(P∗) +

∑
s Π′·,·,sP

∗
·,s −

∑
s P̄n
·,s

)
j

denote the current equity of bank j (the reasons for the choice of notation will become

clear in section). Then the fair conversion factor for creditor i in seniority class s is

given by:

Cfair
j,i,s =


y j,i,s if Equityn

j ≤ 0

Π j,i,sBail-Inn
j,s(

Equityn
j +Bail-Inn

j

) otherwise
(2.4)

where y j,i,s,
∑

i,s y j,i,s ≤ 1, is a share that remains to be determined otherwise, in

practice likely by computing a ratio similar to the above using paid-in capital instead

of current book value equity. While it would seem consistent with the idea of the fair

share that the bailed in creditors would gain full control of the bailed in bank, we have

to assume that the y j,i,s are such that Cfair is still consistent with assumption (i.e.∑
i,s y j,i,s < 1). We thus propose the fair choice of y as:

yfair
j,i,s =


0 if Bail-Inn

j,s = 0

γ
Π j,i,sBail-Inn

j,s

Bail-Inn
j

otherwise
(2.5)
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where γ ∈ [0, 1) ensures
∑

i,s y j,i,s < 1. In order to be able to ensure that the non-

positive wealth impact of the fair conversion matrix also holds for the old equity owners,

we further define Cfair, y=1, which explicitly violates assumption (i.e.
∑

i,s y j,i,s = 1),

and will be used later:

Cfair, y=1
j,i,s =


0 if Bail-Inn

j,s = 0

Π j,i,sBail-Inn
j,s(

max
(
0,Equityn

j

)
+Bail-Inn

j

) otherwise
(2.6)

We will see later (section) that if Cfair
j,i,s = Cfair, y=1

j,i,s , the bail-in is neutral for all
affected creditors, and deal with the general case there as well. For now we present
a simple example to demonstrate the mechanics of a bail-in. Consider a bank with
only external assets of 100 monetary units, only one creditor in one seniority class of
liabilities totalling 70 monetary units, of which 10 are bailed in (figure). The fair
share in this example is given by 25%, leaving the old equity owners with an unchanged
equity stake of (1−25%)∗40 = 30 and the bailed in creditor with a 25%∗40 = 10 equity
stake, equal to the amount of bailed in liabilities. A higher conversion share, e.g. 50%
would imply equal equity stakes of 20 for both investors, thus transferring 10 monetary
units from the old shareholder to the creditor. A lower share, e.g. 0%, corresponding
to a complete write-down for the creditor, would imply a transfer of 10 units from the
creditor to the old shareholder. Note that the structure of the balance sheet, as shown in
the right part of figure, would look the same under all conversion shares, as these
only affect the investors.

Figure 2.1: Fair conversion share example

Before Bail-In

External Assets
100 Liabilities

70

Bailed in

Equity
30 Bailed in liabilities: 10

Fair conversion share:
10

30+10 = 25%

After Bail-In

External Assets
100

Liabilities
60

Equity
40
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We now briefly describe the relevant bail-in regulation, which will help us model the
bail-in threshold and relate the abstract notations in the previous section to the bail-in
mechanism.

2.1 Legal framework

The EU legal framework for bail-in is established in the SRM regulation 1 (see article
27), and discussed in Hüser et al.. In this framework, the SRM has the capability
of writing down or converting into equity liabilities from a bank that is failing-or-likely-
to fail (FLTF). The regulation follows the approach that all liabilities are bail-inable
unless they are excluded in the regulation. Secured liabilities, deposits, and short term
interbank liabilities are not bail-in-able. For an exhaustive list of all liabilities that are
not bail-in-able, refer to the SRM regulation, article 27 (3).

2.1.1 Conditions for resolution and recapitalization

A bank must be considered to be failing-or-likely-to fail (FLTF) for a resolution. EU
authorities have not specified a quantitative threshold for this. A conservative estimation
is 7% of CET1 capital to risk-weighted assets (Hüser et al. infer this estimation
from EU legislation).

The recapitalization level reached after the resolution is also not quantified by EU
authorities, however it is stated in the European Banking Authority (EBA) Regulatory
Technical Standards (RTS) that after the resolution, a bank should have a capitalization
which is similar to the average in a defined per group (Hüser et al.). Following
this guideline, Hüser et al. determine a level of recapitalization of CET1 10 .5% for
the so-called Significant Institutions under direct supervision of the Single Supervisory
Mechanism (SSM).

Basel III capital regulations know two types of basic capital regulations: leverage-
based and risk-weighted. Roughly speaking, both define that capital, under some defi-
nition, needs to be a minimum share of assets, taken either at book values or as a risk

1https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0806from=EN
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exposure amount, respectively. In order to account for risk-weights, we define a bank-
specific weighting function Wi

(
ei,

(∑
s Π′·,·,sP·,s

)
i
, (Θ′V∗(P))i

)
that returns either the sim-

ple sum of its inputs in the case of a leverage ratio or the risk exposure amount in the
case of a risk-weighted ratio. The capitalization of a bank is then given by:

Wi

(
ei,

(∑
s Π′·,·,sP·,s

)
i
, (Θ′V∗(P))i

)
− P̄i

Wi

(
ei,

(∑
s Π′·,·,sP·,s

)
i
, (Θ′V∗(P))i

) (2.7)

For simplicity we will assume a leverage-based threshold in the remainder of the
paper. The extension to a risk-weighted threshold, or to a set of multiple thresholds
including both risk-weighted and leverage-based definitions, is straightforward.

2.1.2 Structure of a bank’s balance sheet

The bail-in must respect the seniority structure of the bank, considering only the most
junior liabilities. For any practical implementation it is thus important to map the the
different classes of liabilities to the seniority structure of the model. While our frame-
work is not restricted to banks, as discussed in section, we provide such a mapping
of seniority classes for bank liabilities here, keeping in mind the intended scope of ap-
plications of the model. Following Hüser et al., we specify the following types of
assets and seniority classes of capital and liabilities.

Capital and Liabilities

• CET1: Common Equity Tier 1 Capital. Consists of the bank’s core capital, mainly
common shares and retained earnings (Committee et al.).

• T2: Tier 2 Capital. Largely consisting of capital reserves, e.g. from revaluations.
We will map CET1+T2 to the equity class in the formal model.

Liabilities, ordered by seniority (junior to senior):

• AT1: Additional Tier 1 Capital. Consists mainly of preferred stock and contingent
convertibles debt instruments (CoCo’s). While we would classify preferred stock
as equity, AT1 can be dominated by CoCo’s, and we will focus on the latter here
and classify AT1 as the most junior liability class. In fact, the hybrid nature of
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CoCo’s warrants special treatment in the context of the network model, which we
will discuss in section.

• Subordinated unsecured debt issued: Junior class of unsecured wholesale fund-
ing.

• Senior unsecured debt issued: Senior class of unsecured wholesale funding.

• Deposits: Deposits by bank customers. Not bail-inable.

• Secured debt issued: Collateralized whosesale funding. These creditors have
claims to particular assets on the balance sheet, hence their claims on the assets
have the highest priority. Not bail-inable.

Assets

• Interbank Debt Holdings: Interbank lendings.

• Interbank Equity Holdings: Participations in other banks in the network.

• External Assets: All other assets.

Table 2.2 provides a mapping of the legal framework to the formal model presented
in section:

2.1.3 Description of the bail-in procedure

The following algorithm presents the main procedure used in the analysis:

• Step 1: Loss on assets, given by the possible bail-in or default of other banks in
the network, and the corresponding loss of interbank debt holdings and interbank
equity holdings.

• Step 2: Bail-in. If the capital of a bank is lower than a required bank-specific
fraction λB

i ≥ 0 of total assets, the liabilities are bailed-in by order of seniority.
The amount of liabilities that are bailed in is given by the necessary amount of
equity to meet the bank-specific recapitalization level λR

i ≥ λB
i . Note that this
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Figure 2.2: Balance sheet of a bank, mapped to the network model.

Interbank Loans∑
s Π′·,·,sP·,s

Interbank Equity Holdings
Θ′V∗(P)

Other Assets
e

Secured Debt Issued
P̄·,1

Deposits
P̄·,2

Senior Unsecured Debt
P̄·,3

Subordinated Unsecured Debt
P̄·,4

AT1
P̄·,5

Capital (CET1 + T2)
V∗(P)

} Not bail-inable

CoCo’s (section)

is a generalization of the standard models presented in section, which can be
recovered by setting λR

i = λB
i = 0 for all i. If not all liabilities within a seniority

level must be converted, a partial bail-in will be effectuated.

2.2 Calculation of the clearing payment matrix

The clearing payment matrix in this framework is defined as follows:

Definition 2.2.1 (Clearing payment matrix with bail-in). A matrix P∗ ∈ Rn×S is a clear-

ing payment matrix with bail-in if and only if it is a fixed point of the map

ΦB(P)i,T =

P̄B
i,T , if ei +AB

i,T ≥ P̄B
i,T(

ei +AB
i,T

)+
, otherwise

(2.8)

where
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Figure 2.3: Network reconfiguration effect of a bail-in

AB
·,T =

S∑
s=1

Π′·,·,sP·,s −
T−1∑
s=1

P̄B
·,·,s + (ΘB)′V∗

(
P, P̄B,ΘB) (2.9)

Note that a bail-in implies a reconfiguration of both the liability as well as the own-
ership network. Figure shows a graphical representation of the network reconfigu-
ration effects implied by such a bail-in in the simple case of only two seniority classes
of debt and a full bail-in (with positive conversion) junior debt of all banks who have
liabilities in this seniority class: as can be seen, all links are deleted from the fully bailed
in layer and added to the equity holdings layer. We refer to the total liabilities matrix
resulting from this operation as P̄B, and to the adjusted holdings matrix as ΘB. Note that
the payoff functions, as illustrated in figure, do not change under this operation –
the bailed in liabilities will be subject to the equity payoff function instead of the payoff

function of their original seniority class.
P̄B and ΘB are calculated together with the clearing payment matrix with bail-in

using the following procedure:

1. (Initialization) Start the iteration with P̄1 = P̄, Θ1 = Θ.

2. (Begin Do-While) Compute P∗ according to the Elsinger algorithm using P̄n and
Θn.
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3. Check which banks have breached the bail-in threshold by computing the corre-
sponding capital ratio,

Λn = diag
(
e + (Θn)′V∗(P∗) +

∑
s Π′·,·,sP

∗
·,s −

∑
s P̄n
·,s

e + (Θn)′V∗(P∗) +
∑

s Π′·,·,sP∗·,s
< λB

)
(2.10)

4. Compute the amount of required bail-in under P∗, P̄n and Θn for each bank. The
bail-in amount is capped at the amount of bail-in-able liabilities, and we further do
not allow negative bail-ins (lowering of the capital ratio for banks that are above
the threshold). We thus obtain the vector Bail-Inn of bail-in amounts at each bank:

Bail-Inn = Λn min

 S∑
s=S−K+1

P̄n
·,s,

∑
s

P̄n
·,s −

(
1 − λR

) e + (Θn)′V∗(P∗) +
∑

s

Π′·,·,sP
∗
·,s

+
(2.11)

5. Update the liabilities and holdings matrices:

P̄n+1
·,s =


P̄n
·,s if Bail-Inn

≤
∑

k>s P̄n
·,k

P̄n
·,s −

(
Bail-Inn

−
∑

k>s P̄n
·,k

)
if

∑
k>s P̄n

·,k ≤ Bail-Inn <
∑

k≥s P̄n
·,k

0 otherwise
(2.12)

The updated holding matrix follows from P̄n+1. Define Bail-Inn
i, j,s to be the lia-

bilities of bank i bailed in in seniority class s, f n
i, j,s to be the share bank j gains

of bank i due to the bail-in of the liabilities Li, j,s, and f̄ n to be the vector of total
shares gained over each bank during the bail-in in iteration n,

Bail-Inn
i, j,s = Πi, j,s

(
P̄n

i,s − P̄n+1
i,s

)
(2.13)

f n
i, j,s = Ci, j,s

(
Bail-Inn,Equityn) (2.14)

f̄ n
i =

∑
j,s

f n
i, j,s (2.15)
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As alluded to in definition, even when a fair conversion matrix is used, the
conversion may lead to a gain for the old equity owners if the equity was negative
prior to the bail-in and positive afterwards. In order to make the impact of the bail-
in non-positive for all investors we define a penalty f p

i =
∑

j,s

(
Cfair, y=1

i, j,s −Ci, j,s

)
,

by which the equity shares of the old owners will be decreased. The updated
conversion matrix is then given by:

Θn+1
j,i =

(
1 − f̄ n

j − I f̄ n
j >0 f p

j

)
Θn

j,i +
∑

s

f n
j,i,s, ∀i, j (2.16)

where I represents an indicator function. Note that the penalty is optional and
f p

j may be set to zero if a non-positive bail-in (see definition below) is not
required.

6. (Termination condition) If P̄n+1 = P̄n and Θn+1 = Θn, or P̄n+1
·,s = 0 ∀ s > S − K

terminate and set P̄B = P̄n+1,ΘB = Θn+1, otherwise continue at step 2.

We now establish a useful characterization of bail-ins:

Definition 2.2.2 (Neutral and non-positive bail-ins). We say that a bail-in is neutral if it

does not change the payoff value of all investments (debt plus equity) for all investors:

∀ i, j : Θn+1
j,i max

(
0,Equityn

j + Bail-Inn
j

)
− Θn

j,i max
(
0,Equityn

j

)
=

∑
s

Π j,i,sBail-Inn
j,s

(2.17)
Note that this relates to both bailed-in creditors as well as diluted equity investors.

Non-positive bail-ins are defined analogously:

∀ i, j : Θn+1
j,i max

(
0,Equityn

j + Bail-Inn
j

)
− Θn

j,i max
(
0,Equityn

j

)
≤

∑
s

Π j,i,sBail-Inn
j,s

(2.18)

Lemma 2.2.1.

(i) When Equityn
j + Bail-Inn

j ≤ 0, any bail-in is non-positive.
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(ii) When Equityn
j ≤ 0,Equityn

j + Bail-Inn
j ≥ 0 and f p

i =
∑

j,s

(
Cfair, y=1

i, j,s −Ci, j,s

)
, ∀i, a

fair conversion matrix implies a non-positive bail-in.

(iii) When Equityn
j ≥ 0 and f p

i =
∑

j,s

(
Cfair, y=1

i, j,s −Ci, j,s

)
, ∀i , a fair conversion matrix

implies a neutral bail-in.

Proof. See Appendix. �

Lemma 2.2.2.
If the bail-in is neutral and Equityn + Bail-Inn

≥ 0, then

V∗(P̄n+1,Θn+1) = Equityn + Bail-Inn (2.19)

Proof. Consider the equity map ψS (V, P) =
(
e+

∑S
s=1 Π′·,·,s P·,s−

∑S
s=1 P̄·,s+Θ′V

)+

defined
in section. Assume the clearing payment matrix under P̄n+1 and Θn+1 is P̄n+1, so that
all banks are solvent. If, under this assumption, Equityn+1

≥ 0, then the assumption is
validated, due to the definition of a clearing payment matrix. Applying definition2.2.2, we obtain for all j,

ψS (Equityn + Bail-Inn, P̄n+1) j = (2.20)

=

e j +
∑

s

∑
i

Πi, j,sP̄n+1
i,s −

∑
s

P̄n+1
j,s +

∑
i

Θn+1
i, j

(
Equityn

i + Bail-Inn
i
)+

(2.21)

=

e j +
∑

s

∑
i

Πi, j,sP̄n+1
i,s −

∑
s

P̄n+1
j,s +

∑
i

Θn
i, jV

∗(P̄n,Θn)i +
∑

s

Πi, j,sBail-Inn
i,s

+

(2.22)

=

e j +
∑

s

∑
i

Πi, j,s
(
P̄n+1

i,s + Bail-Inn
i,s) −

∑
s

P̄n
j,s + Bail-Inn

j +
∑

i

Θn
i, jV

∗(P̄n,Θn)i

+

(2.23)

= Equityn
j + Bail-Inn

j ≥ 0 (2.24)

This proves that Equityn + Bail-Inn is a fixed point of ψS (V). Elsinger prove
that such a solution is unique (see Lemma 5). Hence, V∗(P̄n+1,Θn+1) = Equityn+1 =

Equityn + Bail-Inn
≥ 0, and the clearing payment matrix is P̄n+1.

�
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Theorem 2.2.1.

(i) The sequence P̄n converges to a limit P̄B for any conversion matrix.

(ii) If the conversion is neutral, under P̄B every bailed-in bank either reaches its re-

capitalization ratio or fully bails in all bail-in-able liability classes.

Proof.

(i) Note that by definition, P̄n+1 ≤ P̄n and further note that P̄n ≥ 0 for all n, where
the inequalities are understood to be component-wise. Hence there exists a monotone
limit lim

n→∞
P̄n = P̄B, in the norm ‖A‖∞ = supi, j |Ai, j|.

(ii) Recall that the bail-in amount Bail-Inn is set as

Bail-Inn = min

 S∑
s=S−K+1

P̄n
·,s,

∑
s

P̄n
·,s −

(
1 − λR)(e + (Θn)′V∗(P̄n,Θn) +

∑
s

Π′·,·,sP
∗
·,s

)+
(2.25)

If Bail-Inn
j =

(∑S
s=S−K+1 P̄n

·,s

)
j
, the bank fully bails in all bail-in-able liability classes.

If Bail-Inn
j = 0, there is no bail-in. Otherwise,

Bail-Inn
j =

∑
s

P̄n
·,s −

(
1 − λR)(e + (Θn)′V∗(P̄n,Θn) +

∑
s

Π′·,·,sP
∗
·,s

)
j

(2.26)

By Lemma,

V∗(P̄n+1,Θn+1) j = Equityn
j + Bail-Inn

j (2.27)

= λR
j

e + (Θn)′V∗(P̄n,Θn) +
∑

s

Π′·,·,sP
∗
·,s


j

≥ 0 (2.28)

(2.29)

The new capital ratio is:
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λ j =
V∗(P̄n+1,Θn+1) j

V∗(P̄n+1,Θn+1) j +
∑

s P̄n+1
j,s

(2.30)

=
λR

j

(
e + (Θn)′V∗(P̄n,Θn) +

∑
s Π′·,·,sP

∗
·,s

)
j

Equityn
j + Bail-Inn

j +
∑

s P̄n
j,s − Bail-Inn

j
(2.31)

= λR
j (2.32)

Hence, the recapitalization ratio has been reached. In fact, this argument shows
that the iteration ends after one step, after which every bailed-in bank either reaches
its recapitalization ratio or fully bails in all bail-in-able liability classes, and every non
bailed-in bank maintains its original capital structure, having a capital ratio higher than
the bail-in ratio.

�

The matrix ΘB is defined from P̄B analogously as Θn+1 is defined from P̄n+1.
Note that the above results show that there exist ways to minimize losses due to

bail-ins, and make them even perfectly neutral under some circumstances. Alternative
specifications, including a complete or partial write-down of loans as assumed in the
model of Hüser et al., would be feasible, however they would imply a wealth
transfer from bailed in creditors to old owners of the bailed in bank. This seems critical
when seen in the light of the ‘no-creditor-worse-off ’-principle (NCWO), foreseen both
in EU and US regulations (BRRD, Reform and Act), which states that no
creditor should be worse off under a bail-in than they would be under insolvency. Since
the Elsinger algorithm without bail-in can be seen as an analogue to insolvency, it seems
that a fair conversion would be a necessary requirement in order to satisfy NCWO, a
question we will leave to legal scholars.
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Chapter 3

CoCo’s

Contingent convertibles (CoCo’s) are another source of contagion in the interbank net-
work. They have a similar role as bail-in, however their trigger is generally not based
on a regulatory decision, but specified in the contract. In this section we describe how
to include CoCo’s in the framework described in the previous section. Many details of
the modelling of CoCo’s will be omitted, due to the similarity with the case of bail-in.
Instead, we will focus on the particularities of CoCo’s. The main differences between
CoCo’s and bail-in within the context of our model is that the former may have a sepa-
rate conversion trigger from the latter, and that there is no recapitalization target. Note
that bail-in and CoCo’s are two separate, but mutually compatible additions to the stan-
dard model framework presented in section, and may also be added to it in isolation.

As mentioned previously, the main particularity of CoCo’s is their conversion trig-
ger, which is defined in the contract. The following are the main types of triggers (De
Spiegeleer and Schoutens):

• Market Trigger: The trigger may be based on the market price of shares or CDS
spreads of the issuing institution. The advantage of this type of trigger is that
it is forward looking. However, there could be price manipulation and specula-
tion once the share (or CDS) price gets close to the trigger (De Spiegeleer and
Schoutens).

• Accounting Trigger: This type of trigger is based on accounting ratios such as
the Tier 1 common capital ratio as defined in Basel III. The disadvantage of this
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trigger is that it is based on historical values and updated periodically. In fact,
many of the financial institutions that were rescued during the financial crisis had
capital ratios above the minimum requirement (Kuritzkes and Scott).

• Regulatory Trigger: Corresponds to the decision of a relevant regulation author-
ity, such as in the case of bail-in.

In the framework described in sections and, only the accounting trigger can be
modelled. However, this is a fairly general case, as the main examples of adoption
of CoCo’s are based on accounting triggers (De Spiegeleer and Schoutens). We
assume it is given by a capital ratio as defined in section.

3.1 Conversion type

In the trigger event, CoCo’s may be written down or partially or completely converted
to equity. This is pre-specified in the contract. Let f be the conversion fraction, so that
f = 1 corresponds to a complete conversion and f = 0 corresponds to no conversion
(i.e, no change in liabilities). Let L be the book value of liabilities in the contract, and
the conversion ratio R be the number of shares received for each bond. The conversion
price is defined as:

Cp =
f L
R

The conversion type can be specified by a given conversion ratio, or by a conversion
price based on one of the following (De Spiegeleer and Schoutens):

• Price at trigger date: The conversion price is the price of the share at the trigger
event.

• Price on issue: The conversion price is the price of the share at the time of issue
of the contract, or an average of a number of past prices at the time of issue.

• Price with a floor: The conversion price is the maximum of the price of the share
at the trigger event and a certain pre-specified floor value.
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3.2 Modelling CoCo’s

With the previous specifications of the contract, CoCo’s can be incorporated into the
network model described in section in a very similar way as bail-in, having the same
network reconfiguration effects as depicted in figure. For simplicity, we consider
the modelling of CoCo’s independently of bail-in here, however they could easily be
combined into one model. We assume that each bank has no more than one type of
CoCo, which is consistent with past adoptions of CoCo’s (De Spiegeleer and Schoutens2011), although this assumption could be easily extended. We also consider only the
case in which the conversion ratio is pre-specified in the contract, although this could
be extended to a more general case in which the conversion ratio depends on the equity
value at maturity.

It makes sense to place CoCo’s into an own seniority class in the model. Let sc be the
seniority class of CoCo’s, λC the vector of bank-specific CoCo conversion thresholds, R

the vector of bank-specific conversion ratios, and f the vector of bank-specific conver-
sion fractions. The conversion matrix C determines the amount of shares received by
bank j if the CoCo issued by bank i is triggered in position Ci, j, and is defined by:

Ci, j = fi ∗ Ri ∗ Li, j,sc (3.1)

The calculation of the clearing payment matrix is similar to the bail-in case, de-
scribed in section:

1. (Initialization) Start the iteration with P̄1 = P̄, Θ1 = Θ.

2. (Begin Do-While) Compute P∗ according to the Elsinger algorithm using P̄n and
Θn.

3. Check if any CoCo trigger threshold has been breached.

Λn is the diagonal matrix which indicates whether a bank has breached its
CoCo threshold in the current iteration:

Λn = diag
(
e + (Θn)′V∗(P∗) +

∑
s Π′·,·,sP

∗
·,s −

∑
s P̄n
·,s

e + (Θn)′V∗(P∗) +
∑

s Π′·,·,sP∗·,s
< λC

)
(3.2)

28



Γn keeps track of the banks who’s CoCo’s have triggered in some previous
iteration:

Γn = diag
(

max
(
Λ1, . . . ,Λn−1)) (3.3)

4. Update the liabilities vector and the holding matrix:

P̄n+1
·,sc

=
(
I − Λn(I − Γn))P̄n

·,sc
+ (1 − f ) · Λn(I − Γn)P̄n

·,sc
(3.4)

The updated holding matrix is defined as follows. Let c̄i =
∑

j Ci, j. Then,

Θn+1 =
(
I − Λn(I − Γn))Θn + Λn(I − Γn) (diag

(
1 − c̄

)
∗ Θn + C′

)
(3.5)

5. (Termination condition) If Λn(I−Γn)) = 0, stop the iteration. Otherwise, continue
to step 2.

Note that, by construction, each component of P̄·,sc and each row of Θ are modified
at most once during the iteration. Moreover, in each step of the iteration, one of these
is modified, or else the iteration ends. Hence, the iteration is completed after at most n

steps, where n is the number of banks in the network. Also by construction, when the it-
eration completes all CoCo’s of banks that are under the CoCo threshold have triggered.

Combining the CoCo mechanism described above with the bail-in procedure de-
scribed in section would require checking whether CoCo’s or bail-in are triggered first
(λB < λC or λC < λB) and then ensuring that in the first iteration where at least one
of the two is breached, only the corresponding update operations will be effected. If
λC = λB then the update operations need to be performed in the same iteration, unless
one assumes that e.g. the CoCo’s will be converted first in this case as well.
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Chapter 4

Ex-ante valuation

As pointed out by Barucca et al., the models of the previous sections correspond
to a debt valuation at maturity (i.e, a calculation of payoffs). We now consider the prob-
lem of valuing debt before maturity in the previous framework, thus contributing to the
research which began with Merton’s structural model for pricing debt (Merton),
and was expanded by Suzuki and Fischer, who adapted Merton’s model to
the interbank network framework.

Consider a time frame T = [t0,T ], where t0 is the time at which the pricing is made,
a filtered probability space (Ω,F , (Ft)t∈T,P), and a n-dimensional Brownian motion W,
such that the filtration (Ft) is generated by W. Assume that the external assets et ∈ R

n×T

of each bank follow a diffusion process of the form:

det = µ(t, et)dt + σ(t, et)dWt (4.1)

Where µ(t, et) ∈ Rn is the vector of drifts, and σ(t, et) ∈ Rn is the vector of volatili-
ties. For simplicity, we will restrict the model to the case where et is a multi-dimensional
geometric Brownian motion, with µ(t, et) = µet and σ(t, et) = σet - however, more gen-
eral models such as could be considered without adding much more complexity.
The external assets can be correlated, so assume W is a n-dimensional Brownian mo-
tion, with correlation matrix Σ. Under certain assumptions, this framework corresponds
to a multidimensional Black-Scholes model. In particular, the following assumptions
are made (see Merton):
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1. The external assets of each bank are assumed to be a trade-able asset in a market
with no liquidity costs.

2. Similarly, liabilities Li, j,s and equity shares are assumed to be trade-able assets.

3. There is sufficient supply and demand in the market so that an investor can buy or
sell all assets at any point.

4. It is possible to borrow and lend cash with the same rate of interest. The instanta-
neous rate of interest r is constant.

5. Short-sales are permitted for all assets.

6. All liabilities are to be paid at maturity, including interest rates (no coupon pay-
ments before maturity are considered).

4.1 Measurability of the payoff function

Assuming a fixed maturity T for all liabilities, consider the clearing payment vector
function with bail-in as given in (),

ΦB(P, eT )i,s =

P̄B
i,s, if (eT )i +AB

i,s ≥ P̄B
i,s(

(eT )i +AB
i,s
)+
, otherwise

(4.2)

Where the external assets are given by their value at maturity eT . Define the payoff

function as follows.

Definition 4.1.1 (Payoff function). The payoff function returns the clearing payment

matrix for a given value of external assets,

ΨB : Rn → Rn×S (4.3)

e 7→ ΨB(e). (4.4)

Where ΨB(e) is the greatest fixed point of ΦB(·, e).
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Note that ΨB is bounded by P̄, component-wise. Assuming that ΨB is measurable,
the standard Black-Scholes theory can be applied to value the debt of each bank (see
Lamberton and Lapeyre for a detailed introduction to stochastic calculus applied
to finance). For example, the ex-ante valuation of the liability Li, j,s at time t0 is given by:

Vt0 = e−r(T−t0)EQt0[Πi, j,s ∗ ΨB(eT )i,s] (4.5)

WhereQ is the risk-neutral measure under which e follows the risk-neutral dynamics

det

et
= rdt + σdWQ

t (4.6)

And WQ is a Brownian motion with respect to Q and the natural filtration (Ft). The
operator Et[·] indicates the conditional expectation with respect to Ft. Note that in the
valuation we are assuming that the gained shares in case of bail-in don’t contribute
to the liabilities valuation. This assumption will be relaxed in the case of CoCo valua-
tion in the next section.

Figure shows the ex-ante valuation of the liabilities of a bank with only one
seniority of liabilities p̄ = 70, recapitalization ratio λR = 0.4 and bail-in threshold
λB = 0.3, similar to the case represented in figure. This example illustrates that debt
payments at maturity are not concave with respect to the external assets at maturity, and
that they are not a continuous function of the external assets at maturity.
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Figure 4.1: Debt valuation of the example bank’s liabilities. For the ex-ante valuation,
the following model parameters were considered: r = 0.05, σ = 0.3, T = 1

As mentioned previously, a necessary condition for the value of debt () to be
well defined is the measurability of ΨB. Fischer proves the measurability of the
function with seniority structure - we extend this proof to the case of bail-in.

Theorem 4.1.1. [Measurability of the payoff function] The function ΨB defined in ()

is measurable.

Proof.

1. Firstly, consider the case of the clearing payment vector in a financial system with
no seniority structure.
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Theorem states that the sequence pi+1 = (W∗(pi, e) + p̄)+ ∧ p̄, with p0 = p̄,
converges to the largest clearing payment vector. Lemma states that the
sequence Wk(p, e) defined by W0(p, e) = e + Π′p− p̄ and Wk+1(p, e) = W0(p, e) +

ΘΛkWk+1, where Λk = diag(Wk > 0), converges to W∗(p, e). Hence, defining
ΦW(W) to be a solution of the linear equation ΦW(W) = W0(p, e) + Θ ∗ diag(W >

0) ∗ ΦW(W), W∗(p, e) can be expressed as

W∗(p, e) = lim
k→∞

Φk
W(W0(p, e)) (4.7)

The function ΦW is a solution to a linear equation, hence it is measurable, and
so is Φk

W by composing. Finally, W∗(p, e) is measurable with respect to e almost
surely, as it is a point-wise limit of measurable functions.

A similar argument can be made to show that the clearing payment vector p∗(e) is
a measurable function of e. Define Φp(p) by Φp(p) = (W∗(p, e)+ p̄)+∧ p̄. Because
W∗ is measurable with respect to e, so is Φp, and

p∗(e) = lim
k→∞

Φk
p( p̄) (4.8)

is a measurable function of e.

2. Now, consider the case of seniority structure. The calculation of the clearing ma-
trix with seniority structure was described through an iterative algorithm. Each
step in the algorithm can be described as a function of the external assets e and the
previous values of H. Moreover, in each iteration, all steps consist of transforma-
tions which are compositions of linear transformations, divisions and solutions to
linear equations. All these are measurable. The algorithm has finite steps, so the
resulting clearing matrix P∗ is a measurable function of the input e.

3. The extension to bail-in is analogous. Each step of the algorithm for calculating
the clearing matrix under bail-in consists of transformations which are composi-
tions of linear transformations, divisions and solutions to linear equations, all of
which are measurable with respect to the input e. A limiting argument analogous
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to () proves the measurability of the resulting clearing payment matrix with
respect to e.

�

4.2 Pricing CoCo’s

The payoff of a CoCo is given by the total amount of liabilities if the trigger event has
not occurred at maturity, and the value of the equity conversion if else. The payment
function is given by:

ΦC(P, eT )i,s =

P̄C
i,s, if (eT )i +AC

i,s ≥ p̄C
i,s(

(eT )i +AC
i,s
)+
, otherwise

(4.9)

Where p̄C andAC are as defined in section. The payo ff function is defined as:

Definition 4.2.1 (Payoff function with CoCo’s). The payoff function returns the clearing

payment vector for a given value of external assets,

ΨC : Rn → Rn×S (4.10)

e 7→ ΨC(e). (4.11)

Where ΨC(e) is the greatest fixed point of ΦC(·, e).

The proof of the measurability of ΨC is analogous to. Hence, the ex-ante
valuation of the CoCo issued by bank i to bank j is:

Vt0 = e−r(T−t0)EQt0[Πi, j,sc ∗ ΨC(eT )i,sc + Ci, jV∗i (eT )1Conversioni] (4.12)

Where V∗(e) is the equity value of each bank after contagion,

V∗(e) =
(
e +

S∑
s=1

Π′·,·,s ΨC(e)·s −
S∑

s=1

P̄C
·,s + (ΘC)′V∗(e)

)+

35



And 1Conversioni indicates whether the CoCo of bank i has triggered. The value
Ci, jV∗i (eT )1Conversioniin the expectation corresponds to the value of the shares gained by
the buyer of the CoCo if it is converted.
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Conclusions

In this paper we have presented a model of network valuation for different financial con-
tracts, namely equity participations, debt liabilities of different seniority levels and con-
tingent convertible debt instruments. The starting point of our model is a combination
of the work of Elsinger, who model the valuation of equity and debt of di fferent
seniority levels, with the work of Barucca et al. and Fischer, who discuss
the network valuation of debt at time points before maturity under stochastic prices for
external assets. The combined model can be seen as an extension of the model of Mer-
ton to the multidimensional case with cross-holdings of di fferent instruments. We
extend the combined model to include contingent convertible debt instruments as well
as the bail-in of entire seniority classes of financial instruments to reach capitalization
targets. We provide a Matlab implementation of the model, in the hope of providing
useful resources for policy makers.

The model presented herein provides a framework for assessing the risk of conta-
gion in financial systems, and the potential impact of policy measures, in particular with
regards to bail-in decisions. While the model is of theoretical concern, we demonstrate
its applicability by laying out an example implementation adapted to current capital def-
initions and bail-in regulations in the EU. Adaptions to other regulatory environments
consist largely in an appropriate mapping of available data to the variables and param-
eters of the model. Potential outputs of the model in the context of systemic stress
tests include: (i) loss ’add-ons’ to microprudential stress tests to capture the effects of
contagion. (ii) Rankings of financial institutions by systemic contagiousness and vul-
nerability by considering idiosyncratic defaults of individual institutions or subgroups.
(iii) Merton-type default probabilities and loss rates for banks. Furthermore, (iv)
the model allows assessing the sensitivity of all of the aforementioned outputs to bail-in
decisions and CoCo parameters.
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Appendix A

Conversion matrix properties

Lemma A.0.1.

(i) When Equityn
j + Bail-Inn

j ≤ 0, any bail-in is non-positive.

(ii) When Equityn
j ≤ 0,Equityn

j + Bail-Inn
j ≥ 0 and f p

i =
∑

j,s

(
Cfair, y=1

i, j,s −Ci, j,s

)
, ∀i, a

fair conversion matrix implies a non-positive bail-in.

(iii) When Equityn
j ≥ 0 and f p

i =
∑

j,s

(
Cfair, y=1

i, j,s −Ci, j,s

)
, ∀i , a fair conversion matrix

implies a neutral bail-in.

Proof. (i) follows trivially from definition by noting that Bail-In n
j ≥ 0 for all j, n.

We then note that when f p
j =

∑
i,s

(
Cfair, y=1

j,i,s −C j,i,s
)

we obtain:

Θn+1
j,i =

1 −∑
i

∑
s

Cfair, y=1
j,i,s

 Θn
j,i +

∑
s

C j,i,s (A.1)

We now consider the case Equityn
j ≤ 0,Equityn

j + Bail-Inn
j ≥ 0 (ii). We insert Eq. () into

the definition of a non-positive bail-in and obtain:

∀ i, j :

1 −∑
i

∑
s

Cfair, y=1
j,i,s

 Θn
j,i +

∑
s

Cnon-positive
j,i,s

 (Equityn
j + Bail-Inn

j

)
(A.2)

≤
∑

s

Π j,i,sBail-Inn
j,s

⇐⇒ ∀ i, j :
∑

s

Cnon-positive
j,i,s

(
Equityn

j + Bail-Inn
j

)
(A.3)

+ Θn
j,i

1 −∑
i

∑
s

Cfair, y=1
j,i,s

 (Equityn
j + Bail-Inn

j

)
≤

∑
s

Π j,i,sBail-Inn
j,s (A.4)
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If Bail-Inn
j = 0, the result clearly holds. Assume Bail-Inn

j > 0, and note that

∀ j :

1 −∑
i

∑
s

Cfair, y=1
j,i,s

 (Equityn
j + Bail-Inn

j

)
= (A.5)1 −

∑
i
∑

s Π j,i,sBail-Inn
j,s(

Equityn
j + Bail-Inn

j

)  (Equityn
j + Bail-Inn

j

)
= (A.6)

Equityn
j + Bail-Inn

j −
∑

s

∑
i

Π j,i,sBail-Inn
j,s = Equityn

j ≤ 0 (A.7)

and obtain by inserting () into ():

∀ i, j :
∑

s

Cnon-positive
j,i,s

(
Equityn

j + Bail-Inn
j

)
+ Θn

j,i

(
Equityn

j

)
≤

∑
s

Π j,i,sBail-Inn
j,s (A.8)

Setting Cnon-positive = Cfair, which in this case is given by yfair (Eq.), yields:

∀ i, j : γ

∑
s Π j,i,sBail-Inn

j,s

Bail-Inn
j

(
Equityn

j + Bail-Inn
j

)
+ Θn

j,i

(
Equityn

j

)
≤

∑
s

Π j,i,sBail-Inn
j,s

(A.9)

⇐⇒ ∀ i, j : γ

∑
s Π j,i,sBail-Inn

j,s

Bail-Inn
j

(
Equityn

j

)
+ γ

∑
s

Π j,i,sBail-Inn
j,s + Θn

j,i

(
Equityn

j

)
(A.10)

≤
∑

s

Π j,i,sBail-Inn
j,s

⇐⇒ ∀ i, j : γ

∑
s Π j,i,sBail-Inn

j,s

Bail-Inn
j

(
Equityn

j

)
+ (γ − 1)

∑
s

Π j,i,sBail-Inn
j,s + Θn

j,i

(
Equityn

j

)
≤ 0

(A.11)

which is strictly less than zero in the case that Bail-Inn
j > 0 and Equityn

j ≤ 0.
We now consider the case Equityn

j ,Bail-Inn
j ≥ 0 (iii). We note that in this case Cfair, y=1 =

Cfair and insert Eq. () into the definition of a neutral bail-in to obtain:
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∀ i, j :

1 −∑
i

∑
s

Cfair
j,i,s

 Θn
j,i +

∑
s

Cneutral
j,i,s

 (Equityn
j + Bail-Inn

j

)
− Θn

j,i

(
Equityn

j

)
(A.12)

=
∑

s

Π j,i,sBail-Inn
j,s (A.13)

⇐⇒
∑

s

Cneutral
j,i,s

(
Equityn

j + Bail-Inn
j

)
+

1 −∑
i

∑
s

Cfair
j,i,s

 Θn
j,i

(
Bail-Inn

j

)
− (A.14)∑

i

∑
s

Cfair
j,i,s

 Θn
j,i

(
Equityn

j

)
=

∑
s

Π j,i,sBail-Inn
j,s (A.15)

⇐⇒Θn
j,i

1 −∑
i

∑
s

Cfair
j,i,s

 (Bail-Inn
j

)
−

∑
i

∑
s

Cfair
j,i,s

 (Equityn
j

) + (A.16)∑
s

Cneutral
j,i,s

(
Equityn

j + Bail-Inn
j

)
=

∑
s

Π j,i,sBail-Inn
j,s (A.17)

⇐⇒
∑

s

Cneutral
j,i,s =

∑
s Π j,i,sBail-Inn

j,s

Equityn
j + Bail-Inn

j
=

∑
s

Cfair
j,i,s (A.18)

⇐=Cneutral
j,i,s = Cfair

j,i,s (A.19)

where the last step follows from:

∀ j :

1 −∑
i

∑
s

Cfair
j,i,s

 (Bail-Inn
j

)
−

∑
i

∑
s

Cfair
j,i,s

 (Equityn
j

)
= (A.20)

Bail-Inn
j −

∑
i

∑
s

Cfair
j,i,s

 (Equityn
j + Bail-Inn

j

)
= (A.21)

Bail-Inn
j −

∑
s

∑
i

Π j,i,sBail-Inn
j,s

Equityn
j + Bail-Inn

j

 (Equityn
j + Bail-Inn

j

)
= (A.22)

Bail-Inn
j −

∑
s

∑
i

Π j,i,sBail-Inn
j,s = 0 (A.23)

since
∑

i
∑

s Π j,i,s = 0⇔
∑

s(P̄n
·,s) j = 0⇔ Bail-Inn

j = 0 for all j, n.
�
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Appendix B

Matlab Code

B.1 Elsinger algorithm

1 %% c a l c E l s i n g e r
2 % Computes a c l e a r i n g payment v e c t o r f o r a g i v e n f i n a n c i a l system ,

u s i n g
3 % t h e E l s i n g e r ( 2 0 0 9 ) methodology .
4 %
5 % ∗ I n p u t s ∗
6 %
7 % ∗ vecE : v e c t o r ( banks x 1 ) o f o t h e r a s s e t s
8 % ∗ matL : m a t r i x ( banks x banks ) o f i n t e r b a n k c l a i m s
9 % ∗ matThe ta : m a t r i x ( banks x banks ) o f r e l a t i v e i n t e r b a n k h o l d i n g s

10 %
11 % ∗O u t p u t s ∗
12 %
13 % ∗ vecP : c l e a r i n g payment v e c t o r
14 % ∗ v e c E q u i t y : e q u i t y v a l u e s a f t e r c o n t a g i o n
15 %
16 % Author : S u p e r v i s o r o f d i s s e r t a t i o n c a n d i d a t e
17 % L a s t m o d i f i e d : 1 8 . 0 6 . 2 0 1 8
18 %
19

20

21 f u n c t i o n [ vecP , v e c E q u i t y ] = c a l c E l s i n g e r ( vecE , matL , matThe ta )
22

23 %%%
24 % V a r i a b l e i n i t i a l i s a t i o n s
25 vecPba r = sum ( matL , 2 ) ;
26 matPi = matL . / r epmat ( vecPbar , 1 , l e n g t h ( matL ( : , 1 ) ) ) ;
27 matPi ( i s n a n ( matPi ) ) = 0 ;
28

29 % Convergence p a r a m e t e r s
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30 d b l P r e c i s i o n = max ( vecPba r ) / 1 0 0 0 0 0 ;
31 n u m M a x I t e r a t i o n s =100;
32

33 %% Loop t o f i n d f i x e d p o i n t
34 % I n i t i a l i s e loop v a r i a b l e s
35 vecP = vecPba r ;
36 blnLoop = t r u e ;
37 n u m I t e r a t i o n s =0;
38

39 w h i l e blnLoop
40 v e c P o l d = vecP ;
41

42 %%%
43 % Compute new e q u i t y v a l u e
44 v e c E q u i t y = c a l c E q u i t y V a l u e ( vecE , matPi , vecP , vecPbar , matThe ta ) ;
45 p o s D e f a u l t e d = v e c E q u i t y < 0 ;
46

47 %%%
48 % Compute new p v e c t o r
49 v e c E q u i t y = max ( vecEqu i ty , 0 ) ;
50 vecAux = matPi ’∗ vecP+vecE+matTheta ’∗ v e c E q u i t y ;
51 vecP ( p o s D e f a u l t e d ) = max ( 0 , vecAux ( p o s D e f a u l t e d ) ) ;
52

53 %%%
54 % Check f o r c o n v e r g e n c e
55 blnLoop = norm ( abs ( vecP−v e c P o l d ) ) > d b l P r e c i s i o n ;
56 i f n u m I t e r a t i o n s >n u m M a x I t e r a t i o n s
57 blnLoop= f a l s e ;
58 d i s p ( ’No c o n v e r g e n c e i n c a l c E l s i n g e r ’ ) ;
59 end
60 n u m I t e r a t i o n s = n u m I t e r a t i o n s +1;
61 end
62

63 end
64

65 %% Sub− f u n c t i o n c a l c E q u i t y V a l u e
66 f u n c t i o n v e c E q u i t y = c a l c E q u i t y V a l u e ( vecE , matPi , vecP , vecPbar , matThe ta

)
67

68 %% D e c l a r a t i o n s
69 % Convergence p a r a m e t e r s
70 d b l P r e c i s i o n = max ( vecPba r ) / 1 0 0 0 0 0 ;
71 n u m M a x I t e r a t i o n s =100;
72 %%%
73 % V a r i a b l e i n i t i a l i s a t i o n s
74 v e c E q u i t y=matPi ’∗ vecP+vecE−vecPba r ;
75

76 %% Loop t o f i n d f i x e d p o i n t
77 % I n i t i a l i s e loop v a r i a b l e s
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78 blnLoop= t r u e ;
79 n u m I t e r a t i o n s =0;
80 i f sum ( sum ( matThe ta ) ) ˜=0
81 w h i l e blnLoop
82 v e c E q u i t y o l d =v e c E q u i t y ;
83 %%%
84 % Compute new e q u i t y v e c t o r
85 v e c E q u i t y = max ( vecEqu i ty , 0 ) ;
86 v e c E q u i t y = vecE + matPi ’∗ vecP − vecPba r + matTheta ’∗

v e c E q u i t y ;
87

88 %%%
89 % Check f o r c o n v e r g e n c e
90 blnLoop = norm ( abs ( vecEqu i ty −v e c E q u i t y o l d ) ) > d b l P r e c i s i o n ;
91 i f n u m I t e r a t i o n s >n u m M a x I t e r a t i o n s
92 blnLoop= f a l s e ;
93 d i s p ( ’No c o n v e r g e n c e i n c a l c E q u i t y V a l u e ’ ) ;
94 end
95 n u m I t e r a t i o n s = n u m I t e r a t i o n s +1;
96 end
97 end
98

99 end

B.2 Elsinger algorithm with seniority structure

1 %% c a l c E l s i n g e r S e n i o r i t y
2 % Computes a c l e a r i n g payment m a t r i x f o r a g i v e n f i n a n c i a l system ,

u s i n g
3 % t h e E l s i n g e r 2009 methodology wi th s e n i o r i t y s t r u c t u r e .
4 %
5 % ∗ I n p u t s ∗
6 %
7 % ∗ vecE : v e c t o r ( banks x 1 ) o f o t h e r a s s e t s
8 % ∗ matL : m a t r i x ( banks x banks x s e n i o r i t i e s ) o f i n t e r b a n k c l a i m s
9 % ∗ matThe ta : m a t r i x ( banks x banks ) o f i n t e r b a n k h o l d i n g s

10

11 %
12 % ∗O u t p u t s ∗
13 %
14 % ∗ matP : c l e a r i n g payment m a t r i x ( banks ∗ s e n i o r i t i e s )
15 % ∗ v e c E q u i t y A f t e r C o n t a g i o n : e q u i t y v a l u e s a f t e r c o n t a g i o n
16 % ∗ matThe ta : m a t r i x ( banks x banks x s e n i o r i t i e s ) o f i n t e r b a n k

h o l d i n g s
17 % ∗ v e c D e f a u l t e d B a n k s : b o o l e a n v e c t o r ( banks x 1) , 1 i f bank has

d e f a u l t e d
18

19 % Author s : D i s s e r t a t i o n c a n d i d a t e and s u p e r v i s o r
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20 % L a s t m o d i f i e d : 1 8 . 0 6 . 2 0 1 8
21 %
22

23 f u n c t i o n [ matP , vecEqu i ty , matTheta , v e c D e f a u l t e d B a n k s ] =

c a l c E l s i n g e r S e n i o r i t y ( vecE , matL , matThe ta )
24

25 % D ef in e E l s i n g e r 2009 ( s e n i o r i t y ) v a r i a b l e s
26

27 n u m S e n i o r i t y = s i z e ( matL ) ;
28 n u m S e n i o r i t y = n u m S e n i o r i t y ( 3 ) ;
29 numBanks = l e n g t h ( vecE ) ;
30 v e c D e f a u l t e d B a n k s = f a l s e ( numBanks , 1 ) ;
31 vecH = ones ( numBanks , 1 ) ∗ n u m S e n i o r i t y ;
32 b l n l o o p = t r u e ;
33 matLH = z e r o s ( numBanks ) ;
34 matPi = matL ;
35 matPbar = z e r o s ( numBanks , n u m S e n i o r i t y ) ;
36 f o r s =1: n u m S e n i o r i t y
37 matPbar ( : , s ) = matPbar ( : , s ) + sum ( matL ( : , : , s ) , 2 ) ;
38 end
39 f o r s =1: n u m S e n i o r i t y
40 matPi ( : , : , s ) = matL ( : , : , s ) . / r epmat ( matPbar ( : , s ) , 1 , numBanks ) ;
41 end
42 matPi ( i s n a n ( matPi ) ) = 0 ;
43

44 %% Compute c l e a r i n g payment v e c t o r
45 % Use E l s i n g e r 2009 a l g o r i t h m wi th s e n i o r i t y s t r u c t u r e
46

47 w h i l e b l n l o o p
48 % d e f i n e v e c t o r vecEH
49 vecEH = vecE ;
50 f o r i =1: numBanks
51 f o r j =1: numBanks
52 f o r s = 1 : ( vecH ( j ) −1)
53 vecEH ( i ) = vecEH ( i ) + matPi ( j , i , s ) ∗matPbar ( j , s ) ;
54 end
55 end
56 end
57

58 f o r i =1: numBanks
59 f o r s = 1 : ( vecH ( i ) −1)
60 vecEH ( i ) = vecEH ( i ) − matPbar ( i , s ) ;
61 end
62 end
63

64 % d e f i n e m a t r i x matLH
65 f o r i =1: numBanks
66 f o r j = 1 : numBanks
67 matLH ( i , j ) = matL ( i , j , vecH ( i ) ) ;
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68 end
69 end
70

71

72 [ vecP , v e c E q u i t y ] = c a l c E l s i n g e r ( vecEH , matLH , matThe ta ) ;
73 b l n D e f a u l t = v e c E q u i t y < 0 & vecH >1;
74 v e c D e f a u l t e d B a n k s = v e c D e f a u l t e d B a n k s | b l n D e f a u l t ;
75

76 i f ( b l n D e f a u l t == z e r o s ( numBanks , 1 ) )
77 b l n l o o p = f a l s e ;
78 end
79

80

81 % u p d a t e v a r i a b l e s
82 vecH = vecH − b l n D e f a u l t ;
83

84 matP = z e r o s ( numBanks , n u m S e n i o r i t y ) ;
85

86 f o r i =1: numBanks
87 f o r s = 1 : n u m S e n i o r i t y
88 i f ( vecH ( i ) > s )
89 matP ( i , s ) = matPbar ( i , s ) ;
90 end
91 i f ( vecH ( i ) == s )
92 matP ( i , s ) = vecP ( i ) ;
93 end
94 i f ( vecH ( i ) < s )
95 matP ( i , s ) = 0 ;
96 end
97 end
98 end
99

100 % compute e q u i t y v e c t o r
101

102 v e c E q u i t y = vecE ;
103 f o r s =1: n u m S e n i o r i t y
104 v e c E q u i t y = v e c E q u i t y + matPi ( : , : , s ) ’∗matP ( : , s ) − matPbar ( : , s ) ;
105 end
106

107 v e c E q u i t y = v e c E q u i t y + max ( 0 , matTheta ’ ∗ v e c E q u i t y ) ;
108

109

110

111

112 end

B.3 Clearing payment matrix with bail-in
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1 %% c a l c E l s i n g e r B a i l I n
2 % Computes a c l e a r i n g payment v e c t o r f o r a g i v e n f i n a n c i a l system ,

u s i n g
3 % t h e E l s i n g e r 2009 methodology wi th s e n i o r i t y s t r u c t u r e and b a i l − i n .
4 %
5 % ∗ I n p u t s ∗
6 %
7 % ∗ vecE : v e c t o r ( banks x 1 ) o f o t h e r a s s e t s
8 % ∗ vecLambdaB : v e c t o r ( banks x 1) o f b a i l − i n t h r e s h o l d s
9 % ∗ vecLambdaR : v e c t o r ( banks x 1) o f r e c a p i t a l l i z a t i o n t h r e s h o l d s

10 % ∗ matL : m a t r i x ( banks x banks x s e n i o r i t i e s ) o f i n t e r b a n k c l a i m s
11 % ∗ matThe ta : m a t r i x ( banks x banks ) o f i n t e r b a n k h o l d i n g s
12 % ∗ numK : i n t e g e r , d e t e r m i n e s t h e number o f s e n i o r i t y c l a s s e s

c o r r e s p o n d i n g t o b a i l − i n
13 % ∗ f u n C o n v e r s i o n : f u n c t i o n t h a t r e t u r n s t h e d e s i r e d c o n v e r s i o n

f a c t o r .
14 % I n p u t s : M a t B a i l I n − m a t r i x ( banks x numK) of b a i l − i n

amount p e r bank and s e n i o r i t y c l a s s
15 % v e c E q u i t y : e q u i t y v e c t o r ( banks x 1 )
16 % matPi : m a t r i x ( banks x banks x s e n i o r i t i e s )

o f
17 % r e l a t i v e l i a b i l i t i e s
18 % O u t p u t s : c o n v e r s i o n m a t r i x ( banks x banks x numK)
19 %
20 % ∗O u t p u t s ∗
21 %
22 % ∗ matP : c l e a r i n g payment m a t r i x ( banks ∗ s e n i o r i t i e s )
23 % ∗ v e c E q u i t y A f t e r C o n t a g i o n : e q u i t y v a l u e s a f t e r c o n t a g i o n
24 % ∗ matThe ta : m a t r i x ( banks x banks x s e n i o r i t i e s ) o f i n t e r b a n k

h o l d i n g s
25 % ∗ v e c D e f a u l t e d B a n k s : b o o l e a n v e c t o r ( banks x 1) , 1 i f bank has

d e f a u l t e d
26 % ∗ v e c B a i l e d I n B a n k s : b o o l e a n v e c t o r ( banks x 1 ) , 1 i f bank has been
27 % b a i l e d − i n
28 % Author s : D i s s e r t a t i o n c a n d i d a t e and s u p e r v i s o r
29 % L a s t m o d i f i e d : 1 8 . 0 6 . 2 0 1 8
30 %
31

32 f u n c t i o n [ matP , vecEqu i ty , matTheta , vecDefau l t edBanks ,
v e c B a i l e d I n B a n k s ] = c a l c E l s i n g e r B a i l I n ( vecE , matL , matTheta , numK ,
funConve r s ion , vecLambdaB , vecLambdaR )

33

34

35 % D ef in e E l s i n g e r 2009 ( s e n i o r i t y ) v a r i a b l e s
36

37 n u m S e n i o r i t y = s i z e ( matL ) ;
38 n u m S e n i o r i t y = n u m S e n i o r i t y ( 3 ) ;
39 numBanks = l e n g t h ( vecE ) ;
40 v e c D e f a u l t e d B a n k s = f a l s e ( numBanks , 1 ) ;
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41 v e c B a i l e d I n B a n k s = f a l s e ( numBanks , 1 ) ;
42 blnLoop = t r u e ;
43 n u m I t e r a t i o n s = 0 ;
44 matF = z e r o s ( numBanks , numBanks , n u m S e n i o r i t y ) ; % g a i n e d s h a r e s
45 v e c B a i l I n A b l e = z e r o s ( numBanks , 1 ) ;
46 matPi = matL ;
47 matPbar = z e r o s ( numBanks , n u m S e n i o r i t y ) ;
48 m a t B a i l I n = z e r o s ( numBanks , numK) ;
49

50

51 f o r s =1: n u m S e n i o r i t y
52 matPbar ( : , s ) = matPbar ( : , s ) + sum ( matL ( : , : , s ) , 2 ) ;
53 end
54 f o r s =1: n u m S e n i o r i t y
55 matPi ( : , : , s ) = matL ( : , : , s ) . / r epmat ( matPbar ( : , s ) , 1 , numBanks ) ;
56 end
57 matPi ( i s n a n ( matPi ) ) = 0 ;
58

59 % Convergence p a r a m e t e r s
60 d b l P r e c i s i o n = max ( matPbar ) / 1 0 0 0 0 0 ;
61 n u m M a x I t e r a t i o n s =100;
62

63 %% Compute c l e a r i n g payment v e c t o r
64 % Use E l s i n g e r 2009 a l g o r i t h m wi th s e n i o r i t y s t r u c t u r e
65

66 w h i l e blnLoop
67 [ matP , vecEqu i ty , matTheta , v e c D e f a u l t e d B a n k s ] =

c a l c E l s i n g e r S e n i o r i t y ( vecE , matL , matThe ta ) ;
68

69 matPbarOld = matPbar ;
70 % b a i l − in −a b l e l i a b i l i t i e s t o t a l
71

72 f o r s =( n u m S e n i o r i t y −numK+1) : n u m S e n i o r i t y
73 v e c B a i l I n A b l e = v e c B a i l I n A b l e + matPbar ( : , s ) ;
74 end
75 vecLambda = v e c E q u i t y . / ( v e c E q u i t y + sum ( matPbar , 2 ) ) ; % v e c t o r

o f c a p i t a l r a t i o s
76 v e c B a i l I n = max ( 0 , sum ( matPbar , 2 ) − (1 − vecLambdaR ) . ∗ ( v e c E q u i t y

+ sum ( matPbar , 2 ) ) ) ;
77 v e c B a i l I n ( vecLambda > vecLambdaB ) = 0 ; % b a i l i n on ly i f lambda

< lambdaB
78 v e c D e f a u l t e d B a n k s = v e c D e f a u l t e d B a n k s | ( v e c B a i l I n >0 &

v e c B a i l I n A b l e ==0) ;
79 v e c B a i l I n = min ( v e c B a i l I n A b l e , v e c B a i l I n ) ;
80 v e c B a i l e d I n B a n k s = v e c B a i l e d I n B a n k s | ( v e c B a i l I n >0) ;
81

82 % b a i l − i n p r o c e s s
83

84 f o r s =( n umS en io r i t y −numK+1) : n u m S e n i o r i t y
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85 v e c J u n i o r = z e r o s ( numBanks , 1 ) ;
86 f o r s2 =( s +1) : n u m S e n i o r i t y
87 v e c J u n i o r = v e c J u n i o r + matPbar ( : , s2 ) ;
88 end
89 f o r i =1: numBanks
90 i f v e c B a i l I n ( i ) >= v e c J u n i o r ( i )
91 matPbar ( i , s ) = max ( 0 , ( matPbar ( i , s )− v e c B a i l I n ( i ) +

v e c J u n i o r ( i ) ) ) ;
92 m a t B a i l I n ( i , s + numK − n u m S e n i o r i t y ) = matPbarOld ( i ,

s ) − matPbar ( i , s ) ;
93 end
94

95 end
96 end
97

98 matConver s ion = f u n C o n v e r s i o n ( m a t B a i l I n , vecEqu i ty , matPi ) ;
99 f o r i =1: numBanks

100 f o r j =1: numBanks
101 f o r s =( n u m S e n i o r i t y −numK+1) : n u m S e n i o r i t y
102 matF ( i , j , s ) = matConver s ion ( i , j , s + numK −

n u m S e n i o r i t y ) ;
103 end
104 end
105 end
106

107 vecFba r = sum ( sum ( matF , 3 ) , 3 ) ;
108

109

110

111 % u p d a t e l i a b i l i t i e s a r r a y
112

113 f o r s =1: n u m S e n i o r i t y
114 matL ( : , : , s ) = matPi ( : , : , s ) . ∗ matPbar ( : , s ) ;
115 end
116

117 % u p d a t e h o l d i n g m a t r i x
118

119 f o r i =1: numBanks
120 f o r j =1: numBanks
121 matThe ta ( j , i ) = (1 − vecFba r ( i ) ) ∗matThe ta ( j , i ) + sum (

matF ( j , i , : ) ) ;
122 end
123 end
124

125 blnLoop = norm ( sum ( abs ( matPbarOld−matPbar ) , 2 ) ) > d b l P r e c i s i o n ;
126 i f n u m I t e r a t i o n s >n u m M a x I t e r a t i o n s
127 blnLoop= f a l s e ;
128 d i s p ( ’No c o n v e r g e n c e i n c a l c E l s i n g e r B a i l I n ’ ) ;
129 end
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130 n u m I t e r a t i o n s = n u m I t e r a t i o n s +1;
131 end
132

133

134 end
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